skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sburlati, Sophia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Crystalline fibers of the hydrogen-bonded framework bis(guanidinium) naphthalene-1,5-disulfonate, (G)2(1,5-NDS), with ethanol guest molecules twist as they grow when deposited from solution under conditions that favor low nucleation densities and high branching rates. Spherulites comprising helicoidal fibers with a pitch of 3.4 ± 0.5 μm display rhythmic concentric variations in interference colors between crossed polarizers. Tightly packed fibers and platelets, systematically change orientations between flat-on and edge-on crystallites with respect to the substrate surface. Mueller matrix imaging reveals periodic oscillations in the absolute magnitude of the linear retardance and an associated bisignate circular retardance. Single-crystal X-ray diffraction data demonstrates that the twisted (G)2(1,5-NDS)⊃EtOH crystals adopt a bilayer packing motif with ethanol as guest molecules (space group P1 ̅). When the banded spherulite films were subsequently heated at 130°C, the solvated phase was converted to a guest-free crystalline phase (space group P21/c). This transition resulted in loss of linear retardance. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026